



美国 天才班介绍和美国 Math League  
夏令营安排 (1-6年级)





# 目 录



01. 美国 天才班 课程-介绍



02. 美国 Math League 和天才班



03. 互动答疑



04. 联系我们

官方人工客服





# CHAPTER 01

## 美国 天才班 课程-概述





# 分享

## 美国“天才班”课程

### Gifted Programs



“天才班”课程 (Gifted Program) 旨在为在认知与学业测试中展现出卓越能力、并具备优异学业表现的学生而设立。

这类学生通常以非传统的方式看待世界；他们是发散性思维者，在完成任务时往往采用更加抽象和复杂的思考方式。

官方人工客服





# 分享

## 美国“天才班”课程



I, 在“天才班”课堂中，学习不仅停留在知识和操作层面，学生还能够获得对学科内容更为概念化、深入的理解。

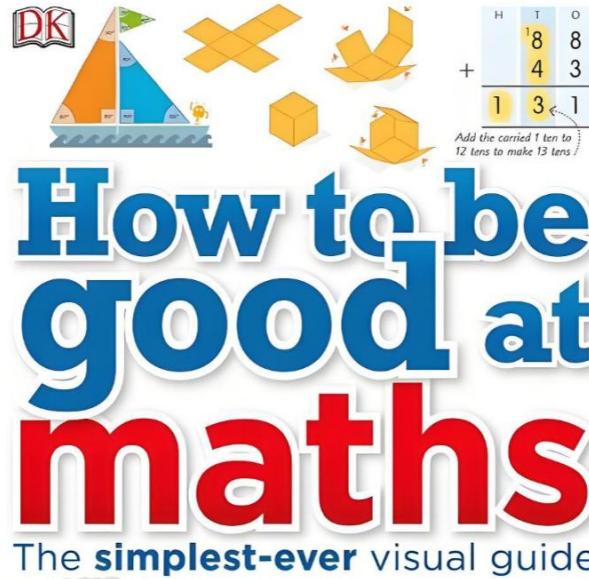
II, 课程设置与教学进度通常比同年级水平提前一至数年

官方人工客服





# "天才班"课程 (Gifted Programs) - 整体框架 (Big Picture)




官方人工客服



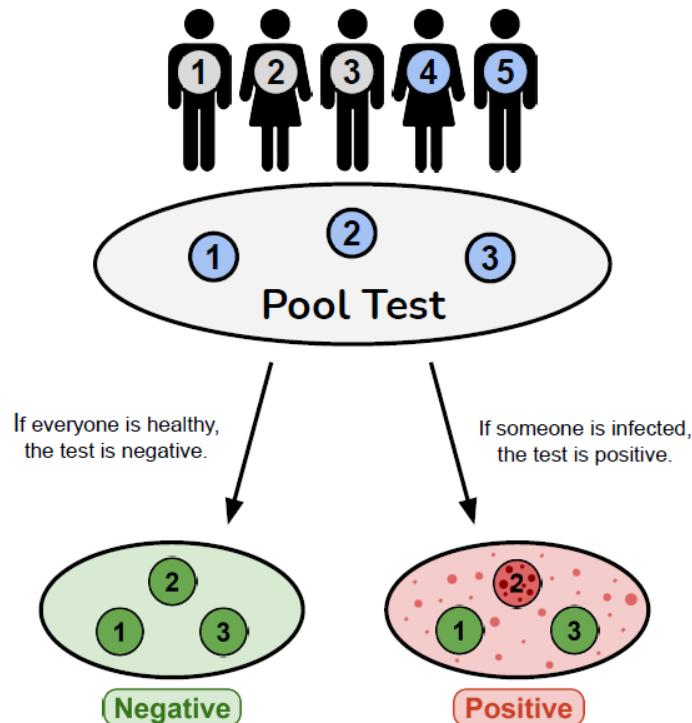


# 1-6年级组



展开

说说


美国天才班的学生  
在接触哪些题目

官方人工客服



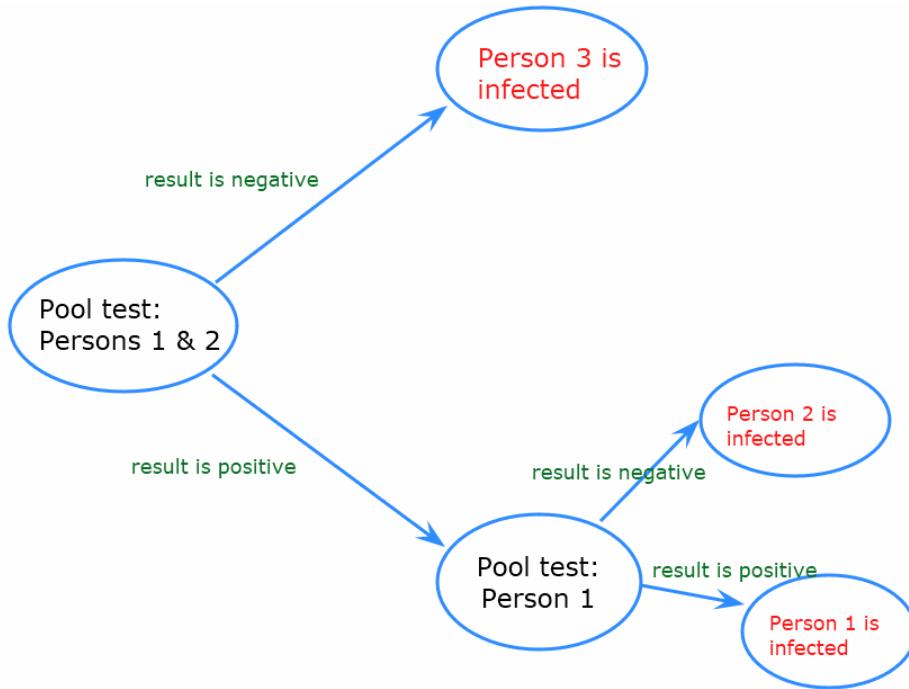
## Pool Testing

Suppose someone is infected with a virus. If there aren't enough tests to test each person individually, a pool test can be used to test many people at the same time. In this example below, three people are tested at the same time.



1. If everyone in a pool test is healthy, the pool test is negative. In the example above on the left, Person 1, Person 2, and Person 3 are all healthy, so the pool test is negative.
2. If the infected person is in a pool test, the pool test is positive. In the example above on the right, Person 1 and Person 3 are healthy, Person 2 is infected, so the pool test is positive.
3. A pool test does not usually tell you who is infected, but it does tell you who might be infected.

Goal:


- Find the infected person using as few pool tests as possible.

Rules:

- Exactly one person is infected.
- You can do pool tests of any size (including a pool of just one person).
- You will usually need to do more than one pool test to find the infected person. You can test the same person any number of times.



For example, in a group of three persons, exactly one person is infected. The fewest number of tests that you need to guarantee that you will always be able to find the infected person is 2. And this is how. Assume the three persons are Person 1, Person 2, and Person 3. First, you test Person 1 and Person 2. If the result is negative, you know Person 3 is infected. If the result is positive, then you know either Person 1 or Person 2 is infected. Then you test Person 1. If the result is negative, Person 2 is infected. If the result is positive, Person 1 is infected. So the fewest number of tests that you need to guarantee that you will always be able to find the infected person is 2. The process is illustrated in the figure below. (Please note this is not the only solution to this problem. But the fewest number of tests that you need stays the same.)



Questions:

- (1) There are 6 persons and exactly 1 person is infected. What is the fewest number of tests that you need to guarantee that you will always be able to find the infected person?
- (2) There are 1000 persons and exactly 1 person is infected. What is the fewest number of tests that you need to guarantee that you will always be able to find the infected person?

1.

Continuing the previous question, if you are only able to do 1 test, the largest number of persons you can test so that you can always find the infected person is 2. That is there are two persons, Person 1 and Person 2, and exactly one person is infected. You can do 1 test and find the infected person. You test Person 1. If the result is negative, you know Person 2 is infected. Otherwise, Person 1 is infected.

If you are only able to do 11 tests, what is the largest number of persons you can test so that you can always find the infected person? (Again assuming exactly one person is infected.)

2.

### **Parallel Testing**

Continuing the previous two questions, one day, you only have enough time to do one round of pool testing. You can do as many pool tests as you want, but you must do all of the tests *at the same time*. **You cannot use the result of one pool test to decide how you'll do another pool test.**

For example, there are 3 persons and exactly one person is infected. You can do 2 tests at the same time to find the infected person. For test 1, you test Person 1 and Person 2. For test 2, you test Person 1 and Person 3. If only test 1 is positive, Person 2 is infected. If only test 2 is positive, Person 3 is infected. If both test 1 and test 2 are positive, Person 1 is infected. So in this case, the fewest number of pool tests that you need to guarantee that you will always be able to find the infected person is 2. (Please note this is not the only solution to this problem. But the fewest number of pool tests that you need stays the same.)

Questions:

- (1) If there are 9 persons and exactly 1 person is infected, what is the fewest number of pool tests that you need to guarantee that you will always be able to find the infected person?
- (2) If there are 2000 persons and exactly 1 person is infected, what is the fewest number of pool tests that you need to guarantee that you will always be able to find the infected person?

3.

Continuing the previous parallel testing problem, if you are only able to do 12 tests at the same time, what is the largest number of persons that you can test so that you can always find the infected one? (Again assuming exactly one person is infected.)

# CHAPTER 02

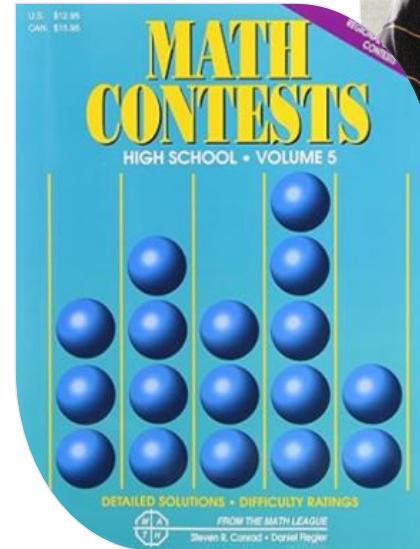
---

美国 Math League  
和  
天才班





# 美国 Math League 历史


**历史悠久：**自1977年起，每年持续举办

**卓越影响力：**美国及北美地区具有卓越影响力的中小学数学思维探索活动

**创始人：**Mr. Steven R. Conrad 和 Mr. Daniel Flegler  
美国著名数学教育家

## 创始人荣誉奖项：

- 1977年Mr. Daniel Flegler获得普林斯顿大学颁发的“卓越中学教育奖”
- 1985年荣获由里根总统颁发的“杰出数学和科学教育总统奖” (PAEMST), 全美国数学和科学教育最高奖
- 担任了很多数学杂志的主编和审阅人
- 美国十五个州和地区的数学竞赛组委会主任委员或委员
- 六年美国SAT 组委会会员
- 共同出版了24本书



官方人工客服






# 过去30年获得菲尔茨奖的美国数学家

| 获奖年份  | 获奖者                | 获奖者获奖时所在的大学、研究院                                |
|-------|--------------------|------------------------------------------------|
| 2022年 | June Huh           | 美国普林斯顿大学 (Princeton University)                |
| 2018年 | Akshay Venkatesh   | 美国斯坦福大学 (Stanford University)                  |
| 2014年 | Maryam Mirzakhani  | 美国斯坦福大学 (Stanford University)                  |
| 2014年 | Manjul Bhargava    | 美国普林斯顿大学 (Princeton University)                |
| 2010年 | Ngô Bảo Châu       | 美国高等研究院 (Institute for Advanced Study)         |
| 2010年 | Elon Lindenstrauss | 美国普林斯顿大学 (Princeton University)                |
| 2006年 | Terence Tao        | 美国加州大学 (University of California, Los Angeles) |
| 2006年 | Andrei Okounkov    | 美国普林斯顿大学 (Princeton University)                |
| 2002年 | Vladimir Voevodsky | 美国高等研究院 (Institute for Advanced Study)         |
| 1998年 | Maxim Kontsevich   | 美国 Rutgers University                          |
| 1998年 | Curtis T. McMullen | 美国哈佛大学 (Harvard University)                    |
| 1998年 | Richard Borcherds  | 美国加州大学 (University of California, Berkeley)    |
| 1994年 | Efim Zelmanov      | 美国芝加哥大学 (University of Chicago)                |
| 1990年 | Edward Witten      | 美国高等研究院 (Institute for Advanced Study)         |
| 1990年 | Vaughan Jones      | 美国加州大学 (University of California, Berkeley)    |

注: 以上数据来自维基百科。

注: 2022年获得菲尔茨奖(Fields Award)的美国普林斯顿大学 (Princeton University) 的 Professor June Huh 教授在2019年给参加美国 Math League 决赛和数学夏令营的学生授课。



官方人工客服





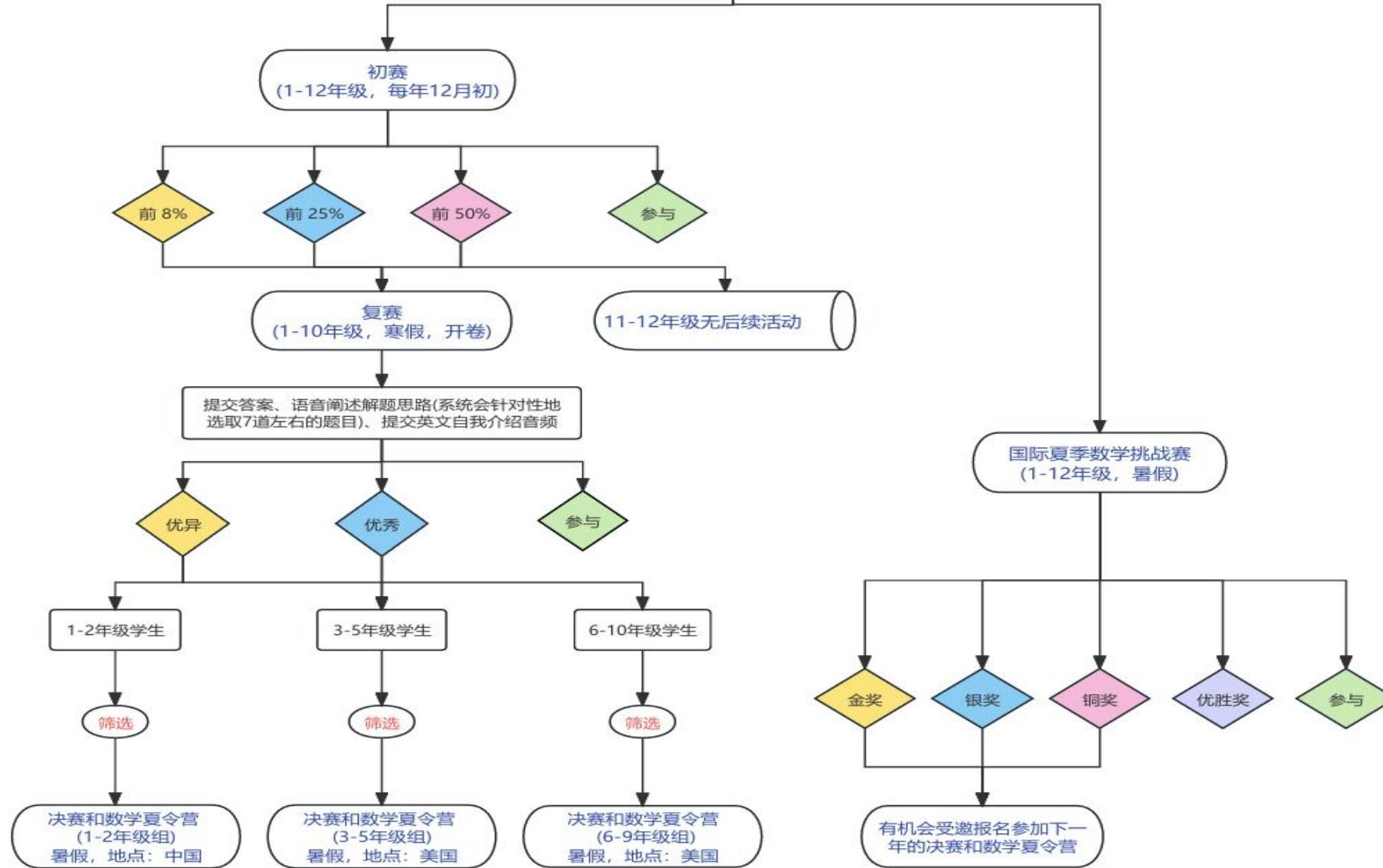
# 什么是“好的”数学题目？



“低门槛、高天花板”



易于理解，但有挑战性




学在当下，保持热爱





## 美国 Math League 思维探索活动



官方人工客服





# 决赛和数学夏令营概述

2026年美国 Math League 决赛和数学夏令营 由美国 Math League 思维探索活动和普林斯顿大学数学系 (Princeton University Mathematics Department)、 哥伦比亚大学数学系 (Columbia University Mathematics Department)、 威廉姆斯学院 (Williams College)、 Swarthmore College 等美国著名大学的教授指导参加决赛和夏令营的学生学习数学。

## 日期安排：

1-2年级组：2026年7月11日(check-in date)到7月13日(check-out date)

3-5 年级组：2026年7月11日(check-in date)到7月18日(check-out date)

6-10 年级组：2026年7月19日(check-in date)到7月27日(check-out date)

## 参与学生：

来自美国、 加拿大、 中国等世界各地成绩优异的学生

## 活动内容：

美国“天才班”课程，决赛、数学讲座、夏令营活动等



官方人工客服





# 纽约时报(The New York Times)报道



## 关于美国 Math League 决赛 和数学夏令营的报道



The New York Times

NUMBERPLAY

### Breaking the Grip of the Gaokao, China's SAT

By GARY ANTONICK August 31, 2015 12:00 pm



Gary Antonick (center front) with the China Math League team outside Wallenberg Hall at Stanford University on Aug. 19, 2015. Gary Antonick

The notorious *Gaokao*, (高考, or “High Test”) is China’s SAT on steroids, with a score on the nine-hour test being the sole criterion for admission to Chinese universities. Preparing for the test is a years-long obsession for both students and parents. (In case you missed it: Brook Larmer’s [Inside a Chinese Test-Prep Factory](#).) And for many, the unfortunate consequence is that the lengthy preparation destroys, rather than enhances, academic ability. Student enthusiasm and curiosity are crushed.

Although many in China are aware of the *Gaokao*’s impact, the test has a 1,300-year history and will not be easily killed. Instead, perhaps the best way to break the *Gaokao*’s life-draining grasp is indirectly, through clubs and activities that rejuvenate kids’ sense of curiosity and fun. And two weeks ago I discovered one such extra-curricular activity that’s becoming popular among Chinese math-lovers: The Math League, an organization based in New Jersey committed to having kids worldwide enjoy math and discussions about problem-solving.

官方人工客服





# 适合参与的学生

- A. 热爱数学和科学、愿意挑战自己的1-6年级学生。
- b. 愿意开拓视野、将来成为国际化人才的学生。
- c. 愿意结交各地朋友的学生。
- d. 有意向将来去美国(和其他国家)留学的学生。

官方人工客服





# 如果我想参加，如何报名？

获得复赛报名资格的学生，可以登录官网：  
[www.mathleague.world](http://www.mathleague.world)，点击“会员登录”按钮报名。



Math League

会员登录

▶ 首页

2025-2026年度活动安排

决赛和夏令营教授简介

联系我们

▼ 活动概况

学术委员会成员

名人寄语

▼ 往届回顾

2024-2025年度活动回顾

2023-2024年度活动回顾

2022-2023年度活动回顾

2021-2022年度活动回顾

2020-2021年度活动回顾

2019-2020年度活动回顾

2018-2019年度活动回顾

2025-2026年度美国 Math League 初赛成绩已发布，请点击以下按钮登录系统查询成绩以及报名参加复赛。

会员登录

美国 Math League 组委会定于2026年1月17日(星期六)上午10:00 – 10:50举办以下直播讲座：“美国小学天才班 (gifted class) 数学学习的内容”，由美国 Math League 组委会资深教授讲解(使用“腾讯会议”)，适合1-6年级的学生和家长参加。欢迎大家参加。[请点击这里报名](#)。

[点击这里查看美国小学天才班 \(gifted class\) 数学学习的简介](#)

最新活动

**2025-2026年度美国 Math League 复赛开始啦!**

[2025-2026年度美国 Math League 活动安排](#)

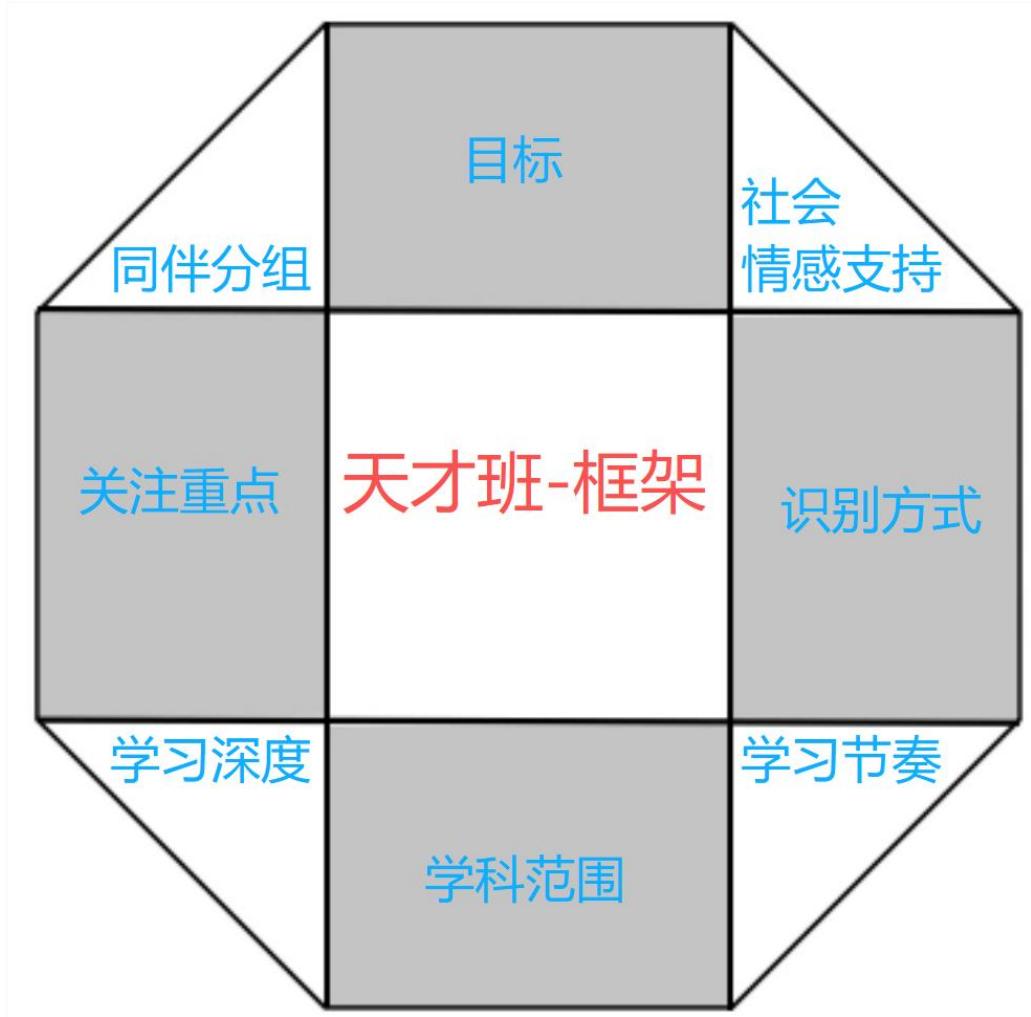
[www.mathleague.world](http://www.mathleague.world)

- 请使用在报名点报名参加活动时提供给报名点的手机号码登录系统。
- 如果你已经有本系统的账户，请输入你设置的密码登录。
- 如果你忘记了密码，请点击“[忘记密码](#)”链接修改密码。
- 本网站不支持手机端访问，请使用电脑或者平板电脑访问。

② | 手机号

④ | 密码

联系我们 学生注册 忘记密码


登录

官方人工客服





# "天才班"课程 (Gifted Programs) - 整体框架 (Big Picture)



| 方面     | "天才班"课程     |
|--------|-------------|
| 目标     | 满足学生独特的认知需求 |
| 关注重点   | 学生如何思考与学习   |
| 学科范围   | 所有核心学科      |
| 识别方式   | 正式测评 + 综合标准 |
| 学习节奏   | 更快且更深入      |
| 学习深度   | 高度概念化、深入    |
| 同伴分组   | 与智力同伴一起     |
| 社会情感支持 | 明确纳入课程设计    |

官方人工客服





# 学生收获

①可以参加原汁原味的美式数学竞赛

②可以了解美国“天才班”课程框架

*Gifted ≠ high grades only*

*天赋≠仅仅获得高分*

③可以结识来自各地和不同地区的优秀数学爱好者



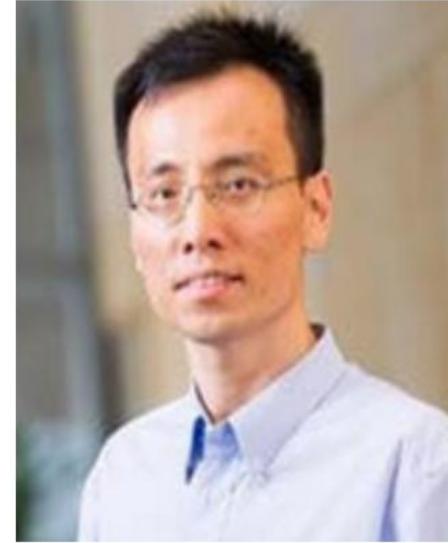
官方人工客服





# 授课教授 (2018年暑 假&2019 年暑假)




**Paul Ellis**

Rutgers University

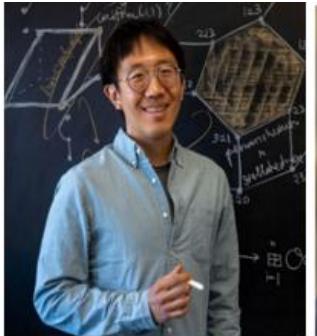


**Nick Rauh**

Seattle Universal  
Math Museum



**Chee Wei Tan**


Nanyang Technological University,  
Singapore

官方人工客服





## 授课教授 (部分)



June Huh  
Princeton University



Matt Weinberg  
Princeton University




Jacob Shapiro  
Princeton University



Mark Saul  
Mathematical Association  
of America

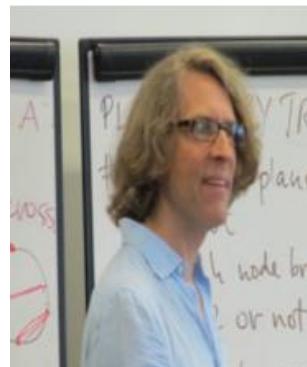


Doron Zeilberger  
Rutgers University



Neil Sloane  
AT&T Bell Labs




Steven Miller  
Williams College



Glen Whitney  
National Museum of Math



Pat Devlin  
Swarthmore College



Michael Thaddeus  
Columbia University



Arthur Benjamin  
Harvey Mudd College



Pravesh Kothari  
Princeton University

官方人工客服





# 往届授课内容

1. From the Quadratic Formula to Differentiation (从二次公式到微分)
2. Mathematics in History, Applications, and Enjoyment (数学的历史、应用和乐趣)
3. Mathematics and Music (数学与音乐)
4. The Wonderful World of Permutations (奇妙的排列世界)
5. Using Randomness in Proofs (在证明中使用随机性)
6. Mathematics and Games (数学与游戏)
7. Stable Machine (稳定的机器)
8. Famous Sequence (著名序列)
9. Tensegrity Polyhedra (张力多面体)
10. Grundy's Game (格兰迪游戏)
11. Apollonian Circle Packings (阿波罗尼安圆填充)
12. Diving into Dimensions (维度探索)
13. How to Use Math to Build a Safe World? (如何用数学构建一个安全的世界? )
14. What's Your Favorite Number? (你最喜欢的数字是什么? )
15. The Art of Problem Solving (解题的艺术)
16. Unlocking Math Magic: Exploring Numbers with AR & VR (揭开数学魔法: 用AR和VR探索数字)
17. Knot Theory (结理论)
18. Checking Divisibility Using Finite Automata (使用有限自动机检查可除性)
19. NIM and JIM
20. Introduction to Mathematical Physics (数学物理导论)
21. Modular Origami (模块折纸)



官方人工客服



# CHAPTER 03

---

互动答疑





# 互动答疑

Q&A

- 1,
- 2,
- 3,
- 4, 上课是用全英语吗?
- 5, 看往年的照片中, 去参加的都是中国孩子

官方人工客服



# CHAPTER 04

---

联系我们





# 联系我们

- 美国 Math League 组委会邮箱:  
INFO@LTHOUGHTS.COM
- 官方人工客服 • 官方服务号 • 官方视频号



- 美国 Math League 官网: [www.mathleague.world](http://www.mathleague.world)



感谢聆听，感谢你的时间，期待下次与大家相聚！